Motorcycle Research by the Virginia Tech Transportation Institute

Mac McCall Motorcycle Research Group VTTI SMSA 2015

State of Research

A lot has changed since then

- Motorcycle capabilities
- Roadway environment and traffic
- Research methods

Until recently the last large scale investigation of issues facing motorcyclists was conducted over 30 years ago (Hurt et al, 1981).

Transportation Institute

Research Methods

Experimental

Controlled experiments Lab, Test Track, Simulator Manipulate an independent variable Measure a dependent variable

Some of both

Naturalistic

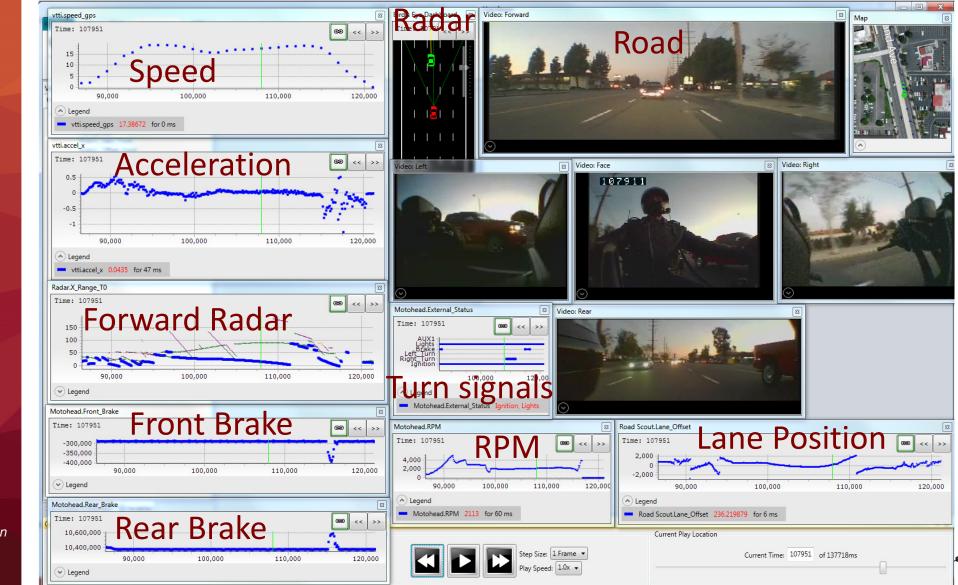
Epidemiological

Passive collection Naturally occurring events Sampling strategies Health sciences

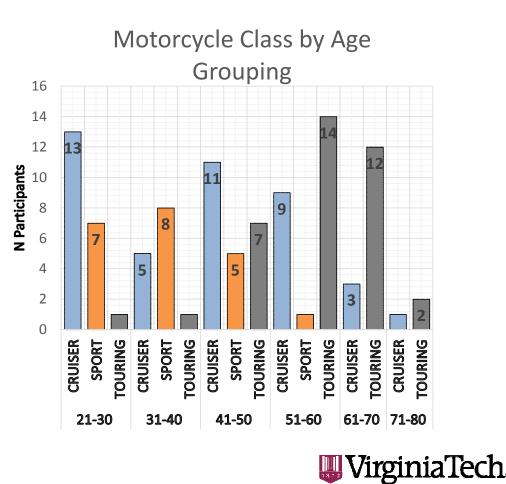
Uirginia

The Equipment

- GPS
- Machine vision lane tracker
- Accelerometers (3 axes)
- Gyro (3 axes)
- Forward radar
- Turn Signals
- Brake lever inputs
- Continuous collection
- 8-12 mo capacity
- Cellular communication from bikes back to VTTI


- Five color cameras
 - forward
 - rear
 - left
 - right
 - rider

WirginiaTech. Transportation Institute



Advancing Transportation Through Innovation

3/4/2016

MSF 100

- 100 Participants (72 male)
- 38,000 trips, 350,000 mi
- Personal Motorcycles instrumented for between two months and two years.
- August 2011 through December 2013
- Personal motorcycles fell into one of three classes
- Participants ranged in age from 21 – 79 years old at time of install

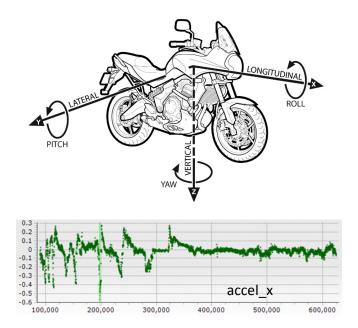
Transportation Institute

MSF 100 Analysis

- Various exploratory analyses have been performed including
 - Identifying high and low frequency riders
 - Weather and riding
 - Early crash Identifications
 - Speeds and accelerations of the sample
 - Early analysis of risk and personality survey data
- Crash and near-crash investigation currently underway.

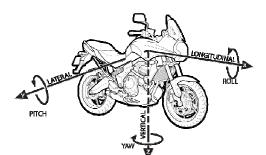
NHTSA 160

- All 160 Motorcycles have been instrumented in Southern California
- 60 Full Size DAS
- 100 MiniDas Units



- Recruiting emphasis on sport and cruiser type motorcycles
- Increased variety of makes and models represented
- Partial data in-house for 140 motorcycles so far

MiniDAS Instrumentation


- Accelerometers (3 axes)
- Gyro (3 axes)s
- GPS
- Two color cameras
 - forward
 - Rider face
- Continuous collection
- 4-6 mo capacity
- Cellular communication
- Rapid install process

Sample of MiniDas IMU Data

Motorcycle Research Group

Connected and Advanced Vehicle Systems Group

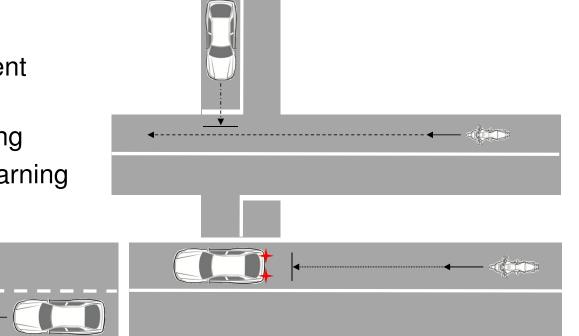
CONNECTED MOTORCYCLE WORK AT VTTI

VTTI approaching connected vehicles from two directions

- Leading the charge for the involvement of motorcycles in the connected vehicle network
- Human Factors of connected motorcycle interfaces.

Motorcycle Crash Warning System Prototype Interfaces

Prototype Interfaces Auditory – Helmet Speakers Visual – Visor/Mirror LEDs Haptic – Wristbands *Tested individually and as a combination of four.


Caution alert/Warning

Advancing Transportation Through Innovation

UrginiaTech. Transportation Institute

Motorcycle Crash Warning System Test Scenarios

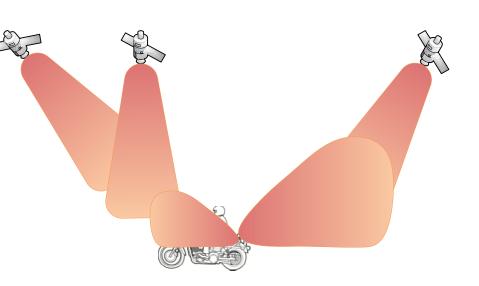
- Closed Track Testing -Smart Road
 - Intersection Movement Assist
 - Lane Change Warning
 - Forward Collision Warning

UirginiaTech. Transportation Institute

Advancing Transportation Through Innovation

Sorry about the teaser...

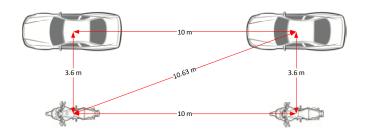
 Results by Dr. Miao Song of VTTI expected to be part of TRB 2016

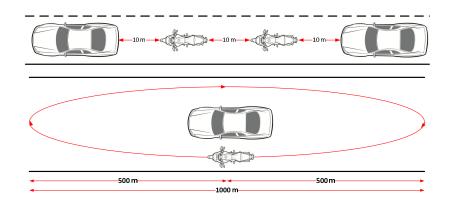


Motorcycle System Performance Background

- Ability of CVS to detect and classify vehicles are based on:
 - Wireless Communication Robustness
 - GPS Position Accuracy
- Unlike Light Vehicles, the CVS antenna is blocked by the Motorcycle Rider and other components on the MC
- Rider occlusion may degrade signal levels, therefore negatively impact CVS alert applications
- Certain roadway environments may exasperate this degradation (e.g. frequent curves requiring considerable lean angle)

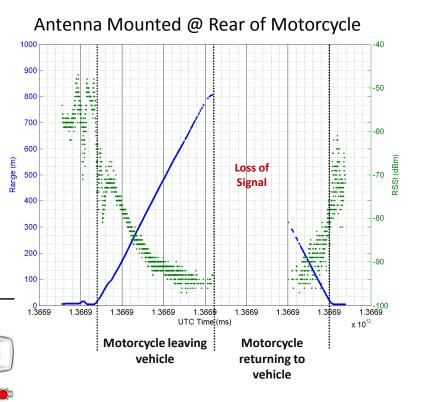
Motorcycle Systems Performance Objectives


- Characterize communications (DSRC) and positioning performance (GPS) based on:
 - Antenna Configuration
 - Terrain and Roadway Geometries
 - Roadway Environments
- Compare motorcycle vs. automobile performance
- Report observations and provide recommendations



Motorcycle System Performance Test Scenarios

- Closed Track Smart Road Testing
 - Static Dwell Tests
 - Dynamic Ranging
 - Dynamic Platooning
- Real World Testing Platooned Performance Drives
 - 2-Hour Platooned drives across diverse roadway environments (i.e. Interstates, Local Roads, Urban Thruways)
 - Locations
 - New River Valley, VA
 - Charleston, SC to Savannah, GA (Planned)

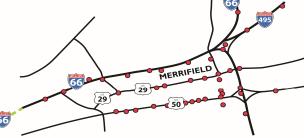

Transportation Institute

Motorcycle System Performance Assessment

- Utilizing data collected during test scenarios, statistics describing Performance Measures such as:
 - Communications:
 - Received Signal Strength Indicator

800 m

- Packet Error Rate
- Inter-Packet Gap
- Position:
 - # of Satellites Used
 - Dilution of Precision
 - Fix Quality


Testing Occurring in the..... Virginia Connected Corridors

VA s

GAINESVILLE

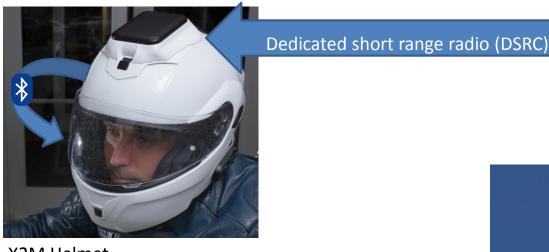
• Two Corridors for Testing

- Smart Road, Blacksburg VA
 - Controlled access
 - Development
- Fairfax County, Northern VA
 - Real work challenges
 - Early Deployment

• Array of Infrastructure

- Connected Vehicle fleet
 - Motorcycle
 - Cars
 - Truck & Buss
- Roadside equipment
- Backed network and processing
- DSRC and cellular capabilities

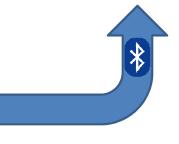
As of this week...



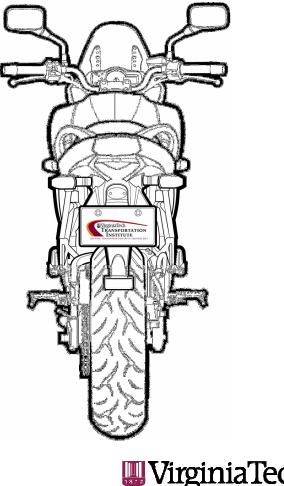
- Provides both Visual and Auditory warnings
- 10 hour battery life
- Can take from bike to bike
- Leverages technology already available in helmets (Bluetooth)
- Can readily be miniaturized

- Prototype DSRC Helmet developed by VTTI
- Supports any V2X (or shall we say M2X) protocol
- Basic equipment of our connected vehicles, packaged in a helmet

UrginiaTech. Transportation Institute



X2M Helmet


RSE Transmitter

WirginiaTech. Transportation Institute

VTTI Motorcycle Program Direction

- Continue to analyze existing and upcoming naturalistic collections in order to understand how exactly riders ride.
- Continue to push the envelope regarding the inclusion of motorcycles in the development of vehicle communication technologies including V2I, I2V, and V2V applications
- Support riders, manufacturers, roadway designers, and policy makers by utilizing data-driven approaches, backed by cutting edge research.

Transportation Institute

Questions and Contact Information

Shane McLaughlin - VTTI (540) 231–1077 <u>smclaughlin@vtti.vt.edu</u>

Mac McCall - VTTI (540) 231–3415 rmccall@vtti.vt.edu

