Exploring Human Factors: The MSF100 Motorcyclists Naturalistic Study

Sherry Williams, Ph.D.

Director, Quality Assurance & Research Motorcycle Safety Foundation

A Presentation to

New York Highway Safety Annual Fall Symposium Lake Placid, NY October 2014

The paper summarizes how naturalistic research studies can add to our understanding of the role of human factors in traffic safety outcomes. Motorcyclists make choices in the bikes they ride, the types of trips they take, when and where they ride, the reasons they ride, and the gear they wear, to name a few. The paper explores how these human choices can and do affect rider incidents and can inform the ongoing development of rider training systems.

Exploring Human Factors: The MSF100 Motorcyclists Naturalistic Study

Conducted by Virginia Tech Transportation Institute

DO NOT DISTRIBUTE Preliminary results only

Human Factors in Traffic Safety

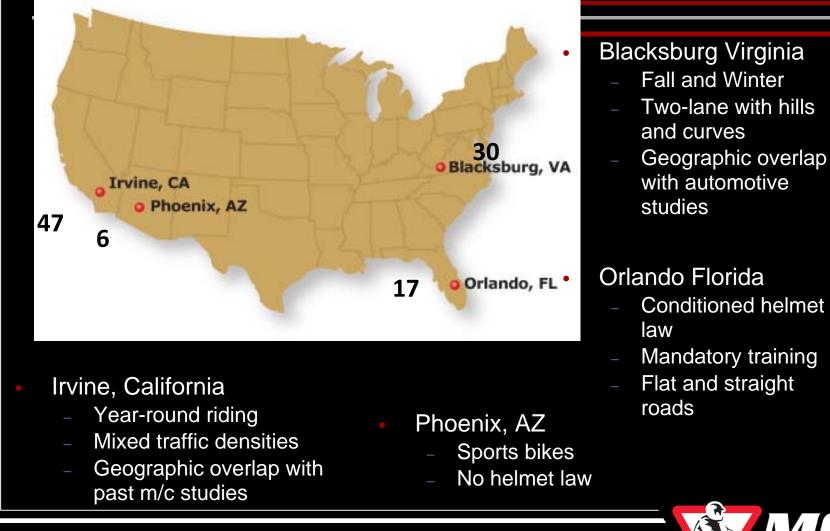
- The application of knowledge about human abilities, limitations, and other human characteristics to the design of equipment, tasks, and jobs.
- How drivers (riders) perform as a system component in the safe operation of vehicles.
 Driver (rider) performance is influenced by many environmental, psychological, and vehicle design factors. NHTSA

Why Study Human Factors

- Fewer accidents
- Fewer near misses
- Reduced potential for human error and its consequences
- What is possible for humans acting within this traffic environment? What is not?
- What should be included in training? In vehicle design?

Naturalistic Study / Human Factors

- Not an experimental setting or a simulated environment
- Personally-owned motorcycles
- Unobtrusive instrumentation
- Participant-driven riding choices
- Continuous measurement (key on key off)
- Not dependent on participant recall
- Varying skill levels, experience levels, personality types, motorcycle types

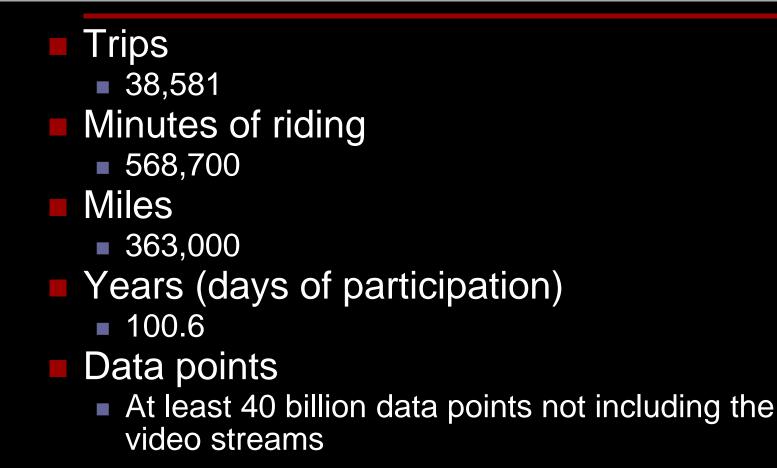

MSF100 Study Overview

- Recruited 100 riders
- Models represented market
- Instrumented personal motorcycles
- No further instructions or interactions
- Notify study sponsor if an incident occurred
- Small stipend for participation
- Ingest data into VTTI system
- Analyze DATA for DECADES!!

Number of Participants in Four Regions

Motorcycle Instrumentation

- 5 Video cameras
- Lane tracking
- Helmet / Gaze tracking
- Front and rear brake
- Accelerometers (3 axes)
- Gyro (3 axes)
- Speed
- Turn signals
- GPS
- Forward radar (speed to lead vehicle/object; distance to lead vehicle – up to 255)
- Continuous collection
- 8-12 month capacity



MSF100 Data Summary

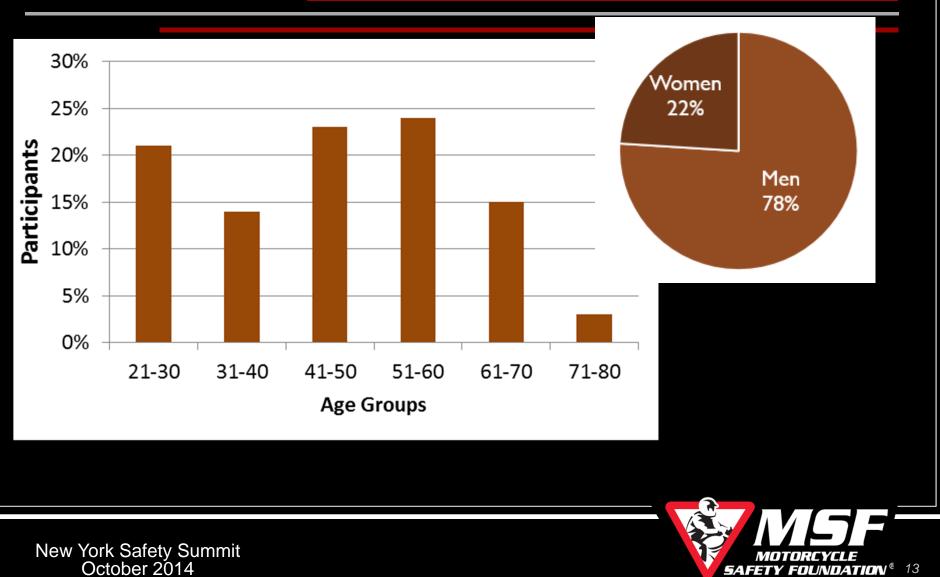
Human Factors

"Static"

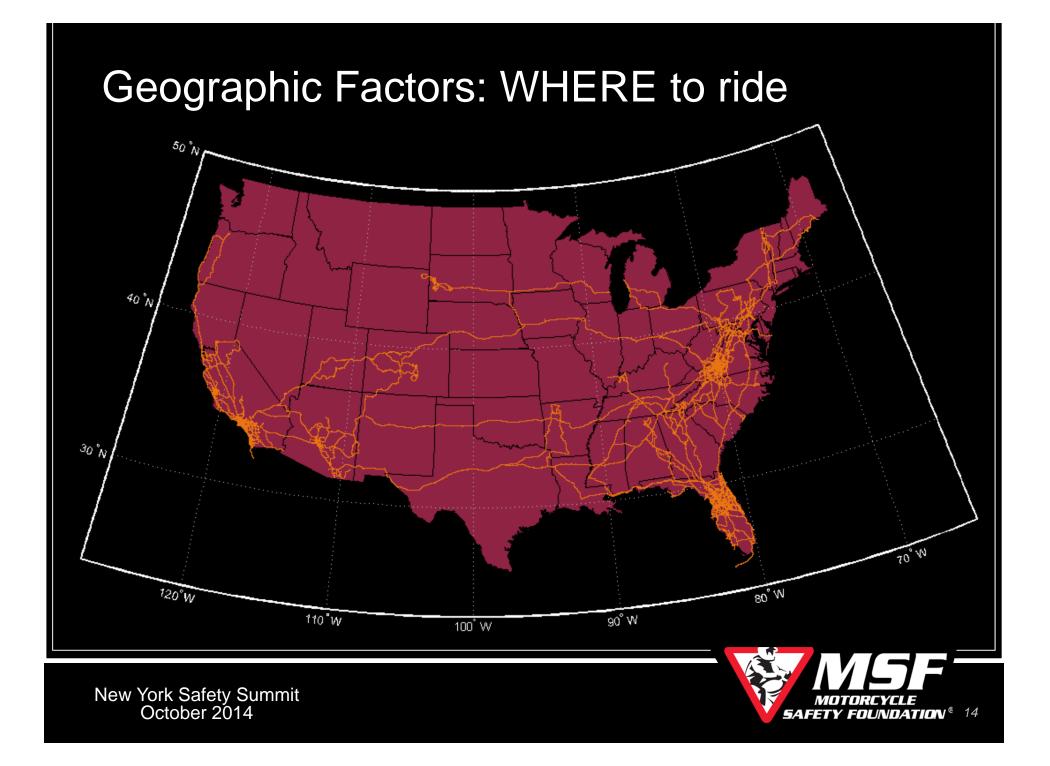
- Demographics
- Geographical
- Vehicle design

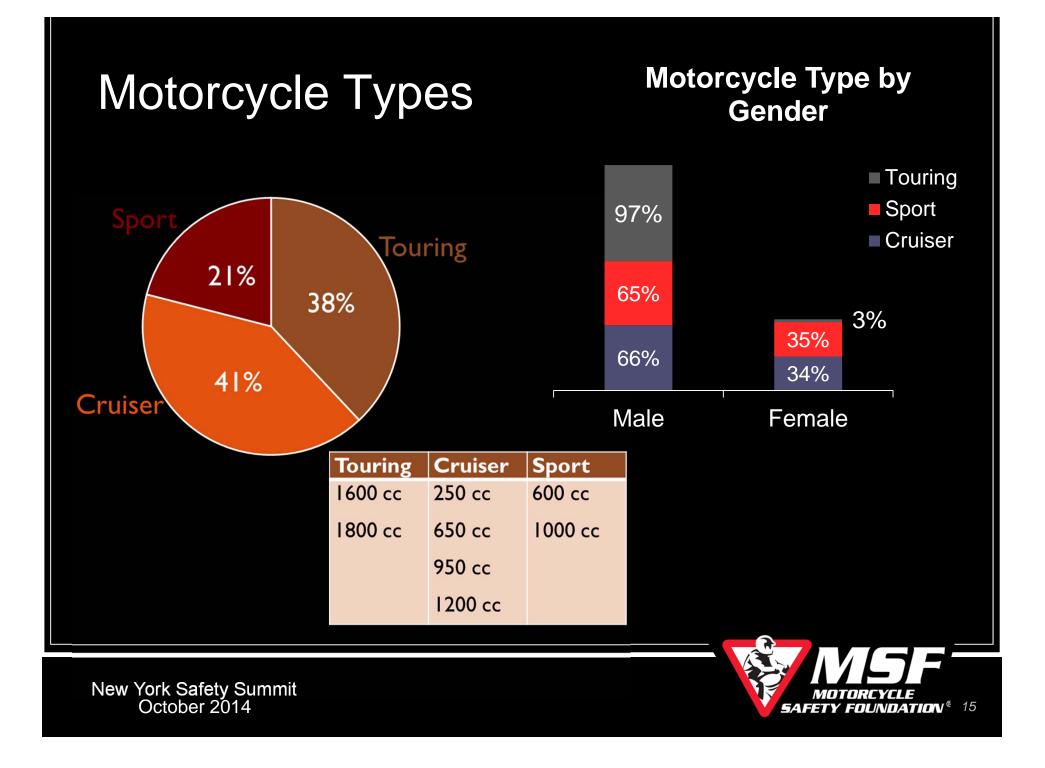
"Fluid"

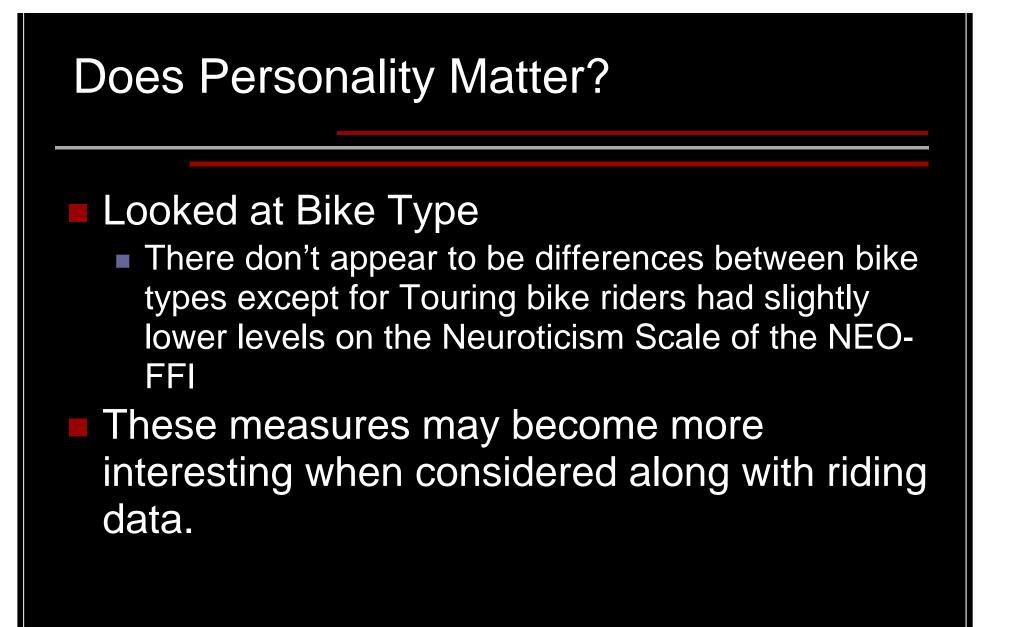
- Rider abilities
- Rider judgment
- Rider choices made moment-by-moment
- WHEN, WHERE, in WHAT Weather, at WHAT Time, with WHAT protective gear


Motorcycle Owners - National

Registrations3%44%53%63%0%

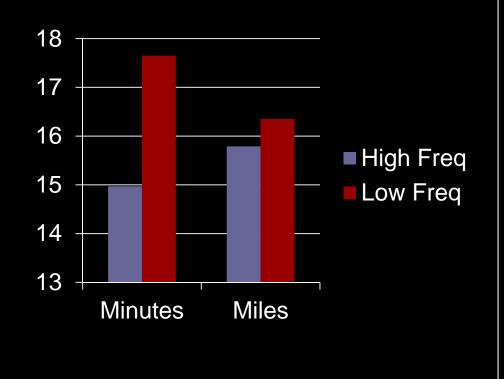

- Median age: 45
- White (75%)
- Married (63%)
- \$64,000 annual income
- Owns 1.4 motorcycles
- Educated (76% some college or more)
- Licensed (87%)
- Primary means of transport: 38%
- 3000 annual miles
- Not taken Rider Ed course (49%) MIC 2012 Motorcycle/ATV Owner Survey




MSF100 Sample: Age and Gender

SAFETY FOUNDATION[®] 13

Fluid Human Factors

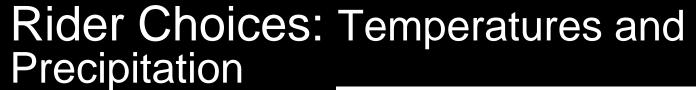

Motorcyclists make Choices Some reduce / manage risk Others increase risk Variation in rider choices Frequency of trips Time of day Speed Gear choices Reactions – Proactive Choices

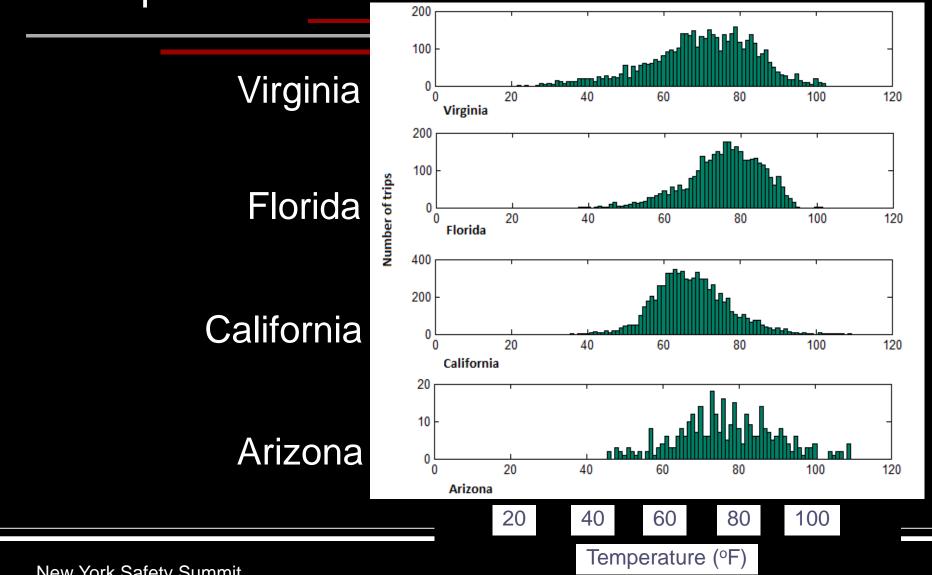
Averages per trip

Length of trip similar
Time difference may be due to speed

High and Low Frequency Riders

		Mean	Minimum	Max
High Frequency	Trips	722	361	1491
	Miles	6,784	1,241	16,228
Low Frequency	Trips	160	11	343
	Miles	1,802	79	7,793
Total	Trips	447	11	1,491
	Miles	4,340	11	16,228
	Miles	4,340	11	16,228



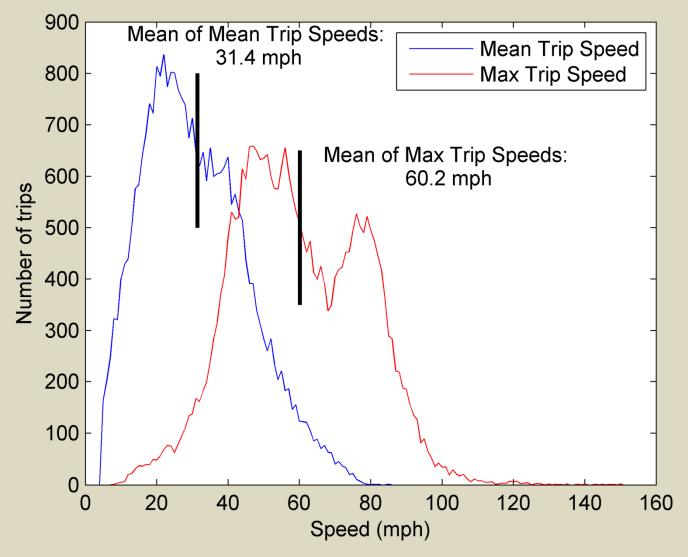

Sample Descriptors: WHEN to ride

Trip and Participant Distribution

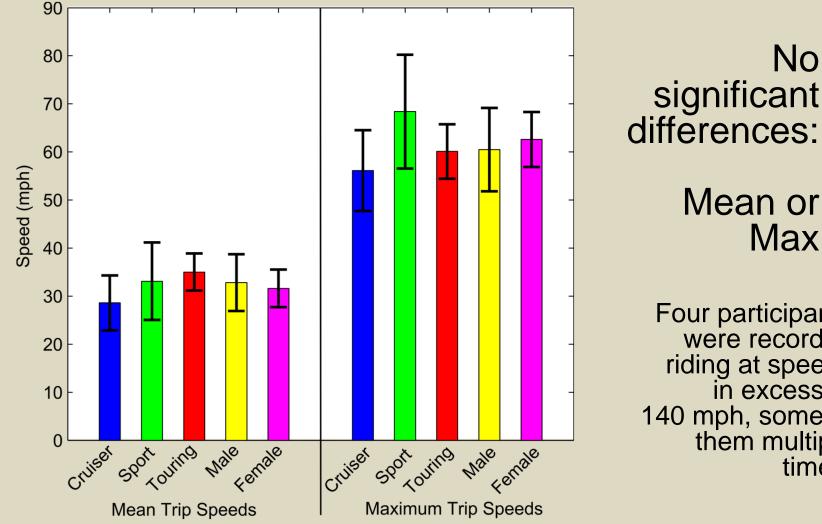
Time of Day	Number of Trips	Percentage of Trips	Number of Participants	Percentage of Participants
Twilight AM	51	4.2%	16	34.8%
Day	653	53.9%	46	100.0%
Twilight PM	219	18.1%	39	84.8%
Night	288	23.8%	36	78.3%
	1211	100%		

New York Safety Summit October 2014

21


Rider Choices: In WHAT Weather

- Location has strongest influence
- 95% of rides occurred between 50°F and 90°F
 \$\overline{x}=70°F\$
- Extreme warmest rides in data set
 - 2.5% of trips between 90°F and 109°F
- Extreme coldest rides in data set
 - 2.5% of trips 50°F and 15.8°F
- 3% of trips at time of nearby precipitation.


Future: Analysis of extremes

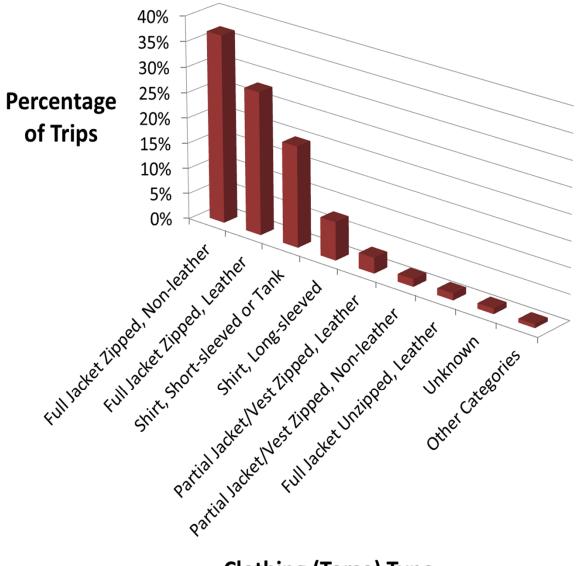
Rider Choices: Mean of Mean, Mean of Max Trip Speed

Mean & Max Trip Speeds by Gender

differences: Mean or Max Four participants

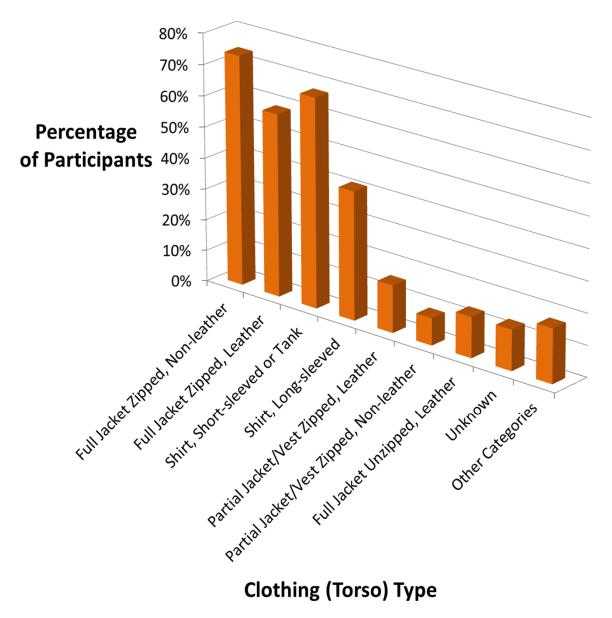
No

were recorded riding at speeds in excess of 140 mph, some of them multiple times.

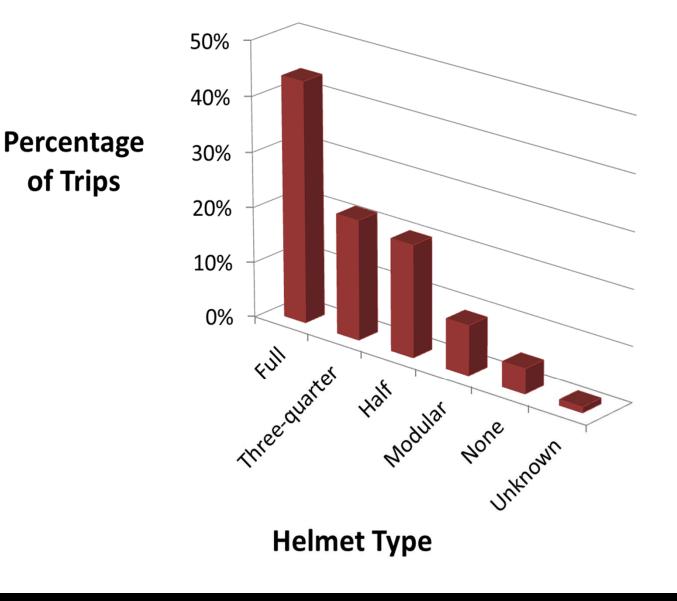

Rider Choices: Protective Gear

- Five video views (rider's face, forward, rear, left, right)
- Video review to characterize rider clothing
 - Torso clothing / apparel
 - Helmet
 - Gloves
 - Eyewear

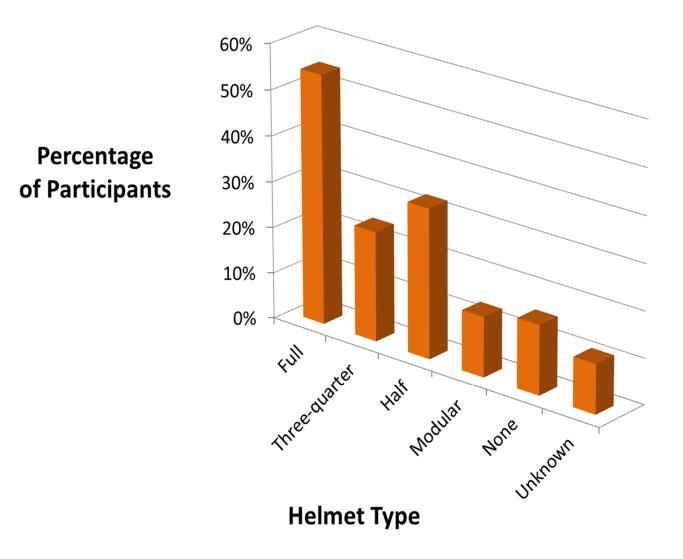
Reductionist coded conditions that existed for most of the trip

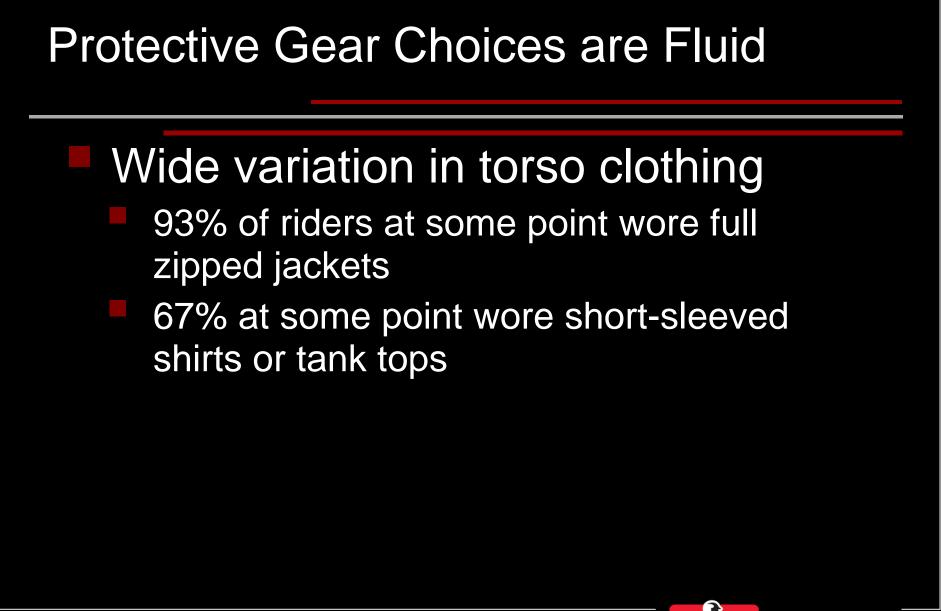


Percentage of Trips Including Each Clothing Type



Clothing (Torso) Type





Percentage of Trips Including Each Helmet Type

Percentage of Participants Wearing Each Helmet Type

Promising Practices

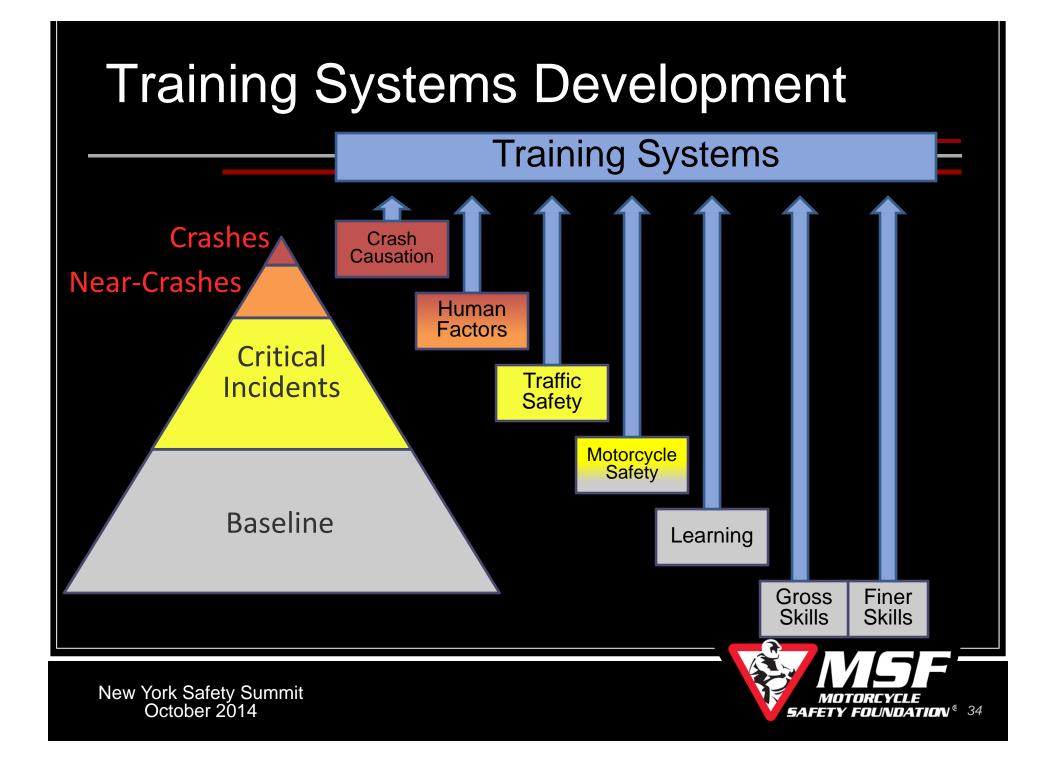
- Helmet usage, even in states with no helmet law, was common
 - 78% of participants always wore helmets; no participant was always without a helmet
 - Only 4 out of the 10 riders based in states with no helmet law were observed at some point without a helmet
 - Could be sample bias

Baseline: Intersection Glance Behavior

Looking forward

- Riders look forward the majority of the time
- All traversals include time looking forward
- 85% of time through the intersection was spent looking forward

Looking to the sides (duration .87 sec)


- 51% of intersections show rider looking LEFT
- 40% looking RIGHT
- Checking mirrors 30%
- Looking behind negligible

Summary

- Further analysis will tell us whether these choices resulted in overall safer or less safe riding outcomes.
- Complex data set requires layered approach
- Many more will be coming.
 - Over the next many years. e.g., The 100 Car Study was conducted in 2003/2004 and still being used to answer research questions.

Incidents: A Key to Human Factors Understanding loss of control sequence 23 crashes involving 19 riders 16 single vehicle 15 were "tip overs" – slow speed, not underway Only 1 single vehicle crash was at speed 7 other vehicles (OV) + study vehicle (SV) 2 rear end 4 OV turns into path of SV

1 track-based crash

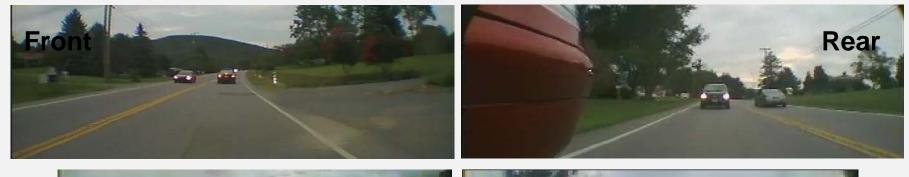
		speed		ra	ange		
Action	seconds	mph	kph	ft	m	TTC (s)	
POV begins LTAP	112.784	41.6	66.9	214	65.1	3.7	
POV brakes in lane	114.800	40.3	64.8	98	29.7	1.7	
Rider lets go of left handlebar	116.388	33.6	54	20	6.1	0.6	

- Left turning OV
- Pedestrian
- Well trained rider

						_	
		spe	eed	ra	inge		
Action	seconds	mph	kph	ft	m	TTC (s)	
 POV begins LTAP	112.784	41.6	66.9	214	65.1	3.7	
POV brakes in lane	114.800	40.3	64.8	98	29.7	1.7	
Rider lets go of left handlebar	116.388	33.6	54	20	6.1	0.6	

		speed		ra		
Action	seconds	mph	kph	ft	m	TTC (s)
POV begins LTAP	112.784	41.6	66.9	214	65.1	3.7
POV brakes in lane	114.800	40.3	64.8	98	29.7	1.7
Rider lets go of left handlebar	116.388	33.6	54	20	6.1	0.6

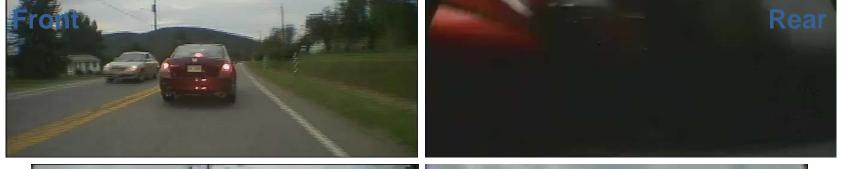
Rear-End Crash – Step by Step

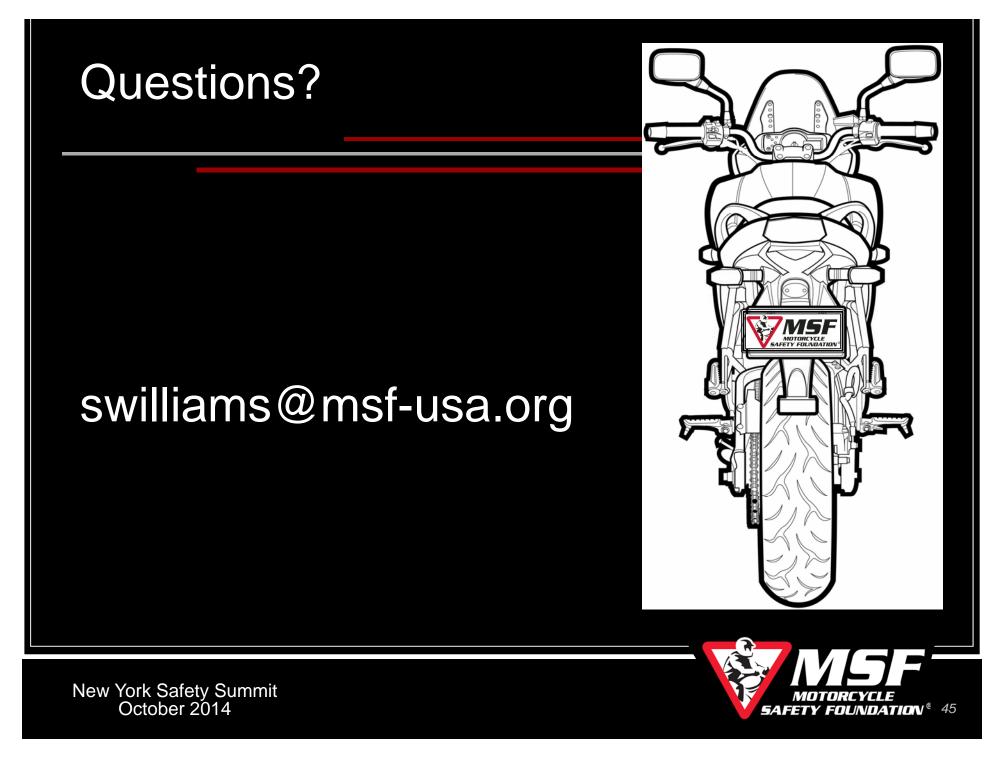

		accel_x	speed		range				
Action	seconds		g	mph	kph	ft	m	TTC (s)	HDW (s)
LV 0.2g braking starts	304.510	0.000	-0.064	24.27	39	110	33.4	-33.4	3.1
Gaze returns forward last time	307.647	3.137	-0.099	26.39	42.41	88	26.7	5.3	2.3
SV decel starts	308.982	1.335	-0.061	26.39	42.41	59	18.1	2.6	1.5
Max SV decel (-0.52g)	309.850	0.868	-0.520	26.03	41.83	42	12.8	2.0	1.1
Impact from following vehicle	312.120	2.270	0.548	11.65	18.72	19	5.7	9.6	1.1
Peak accel from impact	312.320	0.200	1.041	11.65	18.72	19	5.9	3.3	1.1

Clutch

			accel_x	speed		range]	
Action	seconds		g	mph	kph	ft	m	TTC (s)	HDW (s)
LV 0.2g braking starts	304.510	0.000	-0.064	24.27	39	110	33.4	-33.4	3.1
Gaze returns forward last time	307.647	3.137	-0.099	26.39	42.41	88	26.7	5.3	2.3
SV decel starts	308.982	1.335	-0.061	26.39	42.41	59	18.1	2.6	1.5
Max SV decel (-0.52g)	309.850	0.868	-0.520	26.03	41.83	42	12.8	2.0	1.1
Impact from following vehicle	312.120	2.270	0.548	11.65	18.72	19	5.7	9.6	1.1
Peak accel from impact	312.320	0.200	1.041	11.65	18.72	19	5.9	3.3	1.1

			accel_x	speed		range			
Action	seconds		g	mph	kph	ft	m	TTC (s)	HDW (s)
LV 0.2g braking starts	304.510	0.000	-0.064	24.27	39	110	33.4	-33.4	3.1
Gaze returns forward last time	307.647	3.137	-0.099	26.39	42.41	88	26.7	5.3	2.3
SV decel starts	308.982	1.335	-0.061	26.39	42.41	59	18.1	2.6	1.5
Max SV decel (-0.52g)	309.850	0.868	-0.520	26.03	41.83	42	12.8	2.0	1.1
Impact from following vehicle	312.120	2.270	0.548	11.65	18.72	19	5.7	9.6	1.1
Peak accel from impact	312.320	0.200	1.041	11.65	18.72	19	5.9	3.3	1.1


			accel_x	speed		range			
Action	seconds		g	mph	kph	ft	m	TTC (s)	HDW (s)
LV 0.2g braking starts	304.510	0.000	-0.064	24.27	39	110	33.4	-33.4	3.1
Gaze returns forward last time	307.647	3.137	-0.099	26.39	42.41	88	26.7	5.3	2.3
SV decel starts	308.982	1.335	-0.061	26.39	42.41	59	18.1	2.6	1.5
Max SV decel (-0.52g)	309.850	0.868	-0.520	26.03	41.83	42	12.8	2.0	1.1
Impact from following vehicle	312.120	2.270	0.548	11.65	18.72	19	5.7	9.6	1.1
Peak accel from impact	312.320	0.200	1.041	11.65	18.72	19	5.9	3.3	1.1


			accel_x	spe	eed	ra	inge		
Action	seconds		g	mph	kph	ft	m	TTC (s)	HDW (s)
LV 0.2g braking starts	304.510	0.000	-0.064	24.27	39	110	33.4	-33.4	3.1
Gaze returns forward last time	307.647	3.137	-0.099	26.39	42.41	88	26.7	5.3	2.3
SV decel starts	308.982	1.335	-0.061	26.39	42.41	59	18.1	2.6	1.5
Max SV decel (-0.52g)	309.850	0.868	-0.520	26.03	41.83	42	12.8	2.0	1.1
Impact from following vehicle	312.120	2.270	0.548	11.65	18.72	19	5.7	9.6	1.1
Peak accel from impact	312.320	0.200	1.041	11.65	18.72	19	5.9	3.3	1.1

			accel_x	x speed		range			
Action	seconds		g	mph	kph	ft	m	TTC (s)	HDW (s)
LV 0.2g braking starts	304.510	0.000	-0.064	24.27	39	110	33.4	-33.4	3.1
Gaze returns forward last time	307.647	3.137	-0.099	26.39	42.41	88	26.7	5.3	2.3
SV decel starts	308.982	1.335	-0.061	26.39	42.41	59	18.1	2.6	1.5
Max SV decel (-0.52g)	309.850	0.868	-0.520	26.03	41.83	42	12.8	2.0	1.1
Impact from following vehicle	312.120	2.270	0.548	11.65	18.72	19	5.7	9.6	1.1
Peak accel from impact	312.320	0.200	1.041	11.65	18.72	19	5.9	3.3	1.1

New York Safety Summit October 2014

Instrumentation: Unobtrusive Integration

New York Safety Summit October 2014

Instrumentation: Unobtrusive Integration

New York Safety Summit October 2014

