

Research Objectives

- Develop methodology for determining MC count locations
- Determine the accuracy of selected detection systems

Major Research Activities

- Literature review
- Agency engagement
- Field data collection
- Data analysis
- Documentation

Background

- Motorcycle Crashes
 - In 1997 MCs were 5% of total traffic fatalities
 - In 2009 MCs were 14% of fatalities
 - MC crashes 37 times more likely to result in fatalities than auto crashes
 - Rate of increase in fatalities exceeded MC registrations and estimated VMT
- Motorcycle Counts

Technology Selection Criteria

- Accurate in all weather and light conditions
- Reasonable cost
- Simple to install and operate
- Adequate technical support
- Non-intrusive desired
- Covers full lane width

Field Data Collection and Analysis

- Inductive loops/piezoelectric sensors
- Magnetometers by Sensys Networks
- Multi-technology system by Migma
- Tracking video by TrafficVision
- Transportable Infrared Traffic Logger (TIRTL)

Test Locations

S.H. 6 Test Facility

Magnetometers

- Communicates wirelessly
- Battery life in the sensor node 10 yrs
- Improvements since early MC tests
 - Requires two stations for speed and length
 - Sensitivity settings
 - Place three per station

Multi-Technology System

- Designed specifically for MCs
- Initially designed as pedestrian detector
 - Infrared camera
 - Visible light stereo camera
 - Acoustic sensor
- 2d phase SBIR underway

Hybrid Sensor

Sensor Signals

Stereo Images

Thermal Image

Acoustic Signal

Motorcycle Detection Using Stereo Camera

Disparity map is estimated from a pair of stereo images. Motorcyclist is windowed out and detected through human body 3D features. Motorcycle is detected if motorcyclist is detected.

Motorcycle Detection Using IR Camera

Thermal signatures of motorcycles and vehicles are different and can be used for their discrimination.

Video Detection

- Can provide image of roadway
- Accuracy compromised
 - Inclement weather
 - Shadows
 - Artifacts on lens
 - Camera motion
 - Vehicle occlusion
- Light transition periods

Equipment Results Summary

T. 1 1.	MC	Non MC Accuracy	Cost p	D . 100	
Technology	Accuracy		Two-lane	Four-lane	Portability
Loop/piezo	45% ^a	95%	\$16,500	\$15,250	Low
Magnetometer	75%	95%	\$10,204	\$15,964	Med
Multi-technology	50%	N/A	\$3,000	\$6, 000	High
TrafficVision	75%	95%	\$15,000	\$15 , 000 ^b	High
TIRTL	95%	98%	\$13,425	\$13,425 ^c	High

^a Low accuracy might be due to equipment problem.

^b Assumes one system can cover four lanes.

Data Collection Protocols - Results

Objective

Confirm hypothesis that crashes are reasonable predictor of count sites

Method

 Use ArcGIS to develop map of crash locations and current count sites

Findings

Spatial distribution of MC crashes is associated with spatial distribution of MC traffic

- Correlation of MC crashes with MC counts
 - Texas results

Vehicle Type	Motorcycle Crash Frequency					
	Unweighted Weighted					
Motorcycle	0.253*	0.485*				
All vehicles	0.193*	0.505*				

^{*} N = 545; *p*<0.001

- Correlation of MC crashes with MC counts
 - Michigan results

Vehicle Type	Motorcycle Crash Frequency					
	Unweighted Weighted					
Motorcycle	0.266*	0.436**				
All	0.332**	0.521**				

^{*}N=101; *p*<0.005

^{**}N=101; *p*<0.001

Michigan results: weekday vs weekend

Time Period	Crash	Traffic Volume Counts		
	Frequency	Motorcycle All		
Weekday	Unweighted	0.302*	0.387*	
	Weighted	0.467**	0.559**	
Weekend	Unweighted	0.279*	0.333*	
	Weighted	0.462**	0.552**	

^{*}N=51 (weekday); N=50 (weekend), *p*<0.05

^{**}N=51 (weekday); N=50 (weekend), *p*<0.001

Conclusions

- Conclusions
 - Improving motorcycle VMT accuracy
 - Selecting appropriate locations
 - Choosing the best technology

Recommendations

- TIRTL results
 - Classifies according to FHWA Scheme F
 - Can be portable or fixed
 - Cost per lane is competitive
 - Modifications make it even better
- Supplemental research
 - Verify accuracy of TrafficVision, Migma, and TIRTL in inclement weather
 - Loop/piezo equipment problems
 - Magnetometers require three nodes per station

Recommendations

- Based on four states:
 - Crash sites are reasonable representation of count sites
 - Need count data weekend vs. weekday
 - Use weighting factor based on distance measured along count roadway
 - Needs further testing in other states

Contact Information

Dan Middleton, Ph.D., P.E.
Texas A&M Transportation Institute
2929 Research Parkway
3135 TAMU
College Station, TX 77843-3135
Phone: (979) 845-7196

Email: d-middleton@tamu.edu

Issues Involved in MC Detection

- Motorcycle definition
- Spatial and temporal factors
- Lane discipline
- Vehicle size
- Vehicle occlusion

Motorcycle Definition

- FHWA uses two categories
 - Large motorcycles with 2 or 3 wheels
 - Mopeds and scooters (requiring registration)
- Some states define in other ways
 - 2 or 3 wheels in contact with the ground
 - A seat or saddle with sidecar/trailer
 - A handlebar
 - No enclosure for operator
 - By size: engine HP or wheel diameter

Spatial & Temporal Factors

- State methods might not be valid
- Investigate spatial/temporal differences
 - Weekdays
 - Weekends

Lane Discipline

- Detector must cover the entire lane width
- Shoulder detection
- Between rows of cars (lanes)

Vehicle Size

- Current Harley-Davison WB: 63-66 in
- Subcompact Smart ForTwo WB: 73.5 in
- Other subcompacts WB: 2-3 ft longer
- Conclusion
 - Easier to distinguish by magnetic length
 - MCs have magnetic length 3 ft shorter than physical length

Vehicle Occlusion

MCs are often occluded by tall vehicles

RESEARCH APPROACH

$$C_w = \frac{100,000*C_r}{D_a}$$

- Where:
- C_w = Weighted crashes.
- C_r = Raw crash frequency.
- $D_a = \{\sum_{1}^{n} d\}/n = Average distance from crashes to nearest count station.$

Inductive Loop/Piezo Results

		Ground Detected		Detection Accuracy		Bin
Date	Time Span	Truth	MC/Actual	Simple	Overall	
June 30, 2012	11:00-12:00 09:00-10:00	Video/ ADR-6ooo	5/6 2/3	88.3% 66.7%	-	Hourly
July 1, 2012	11:00-12:00 09:00-10:00	Video/ ADR-6ooo	0/3 0/4	o% o%	- -	Hourly
July 3, 2012	11:00-12:00 11:00-12:00	Video/ ADR-6ooo	4/24 10/20	16.7% 50.0%	-	Hourly
July 21, 2012	00:00-24:00	ADR-6000	104/191	54.45%	99.76%	Hourly
July 22, 2012	00:00-24:00	ADR-6000	76/154	49.35%	99.76%	Hourly
July 23, 2012	00:00-24:00	ADR-6000	41/73	56.16%	99.82%	Hourly
Feb. 8, 2013	13:00-15:00	Video/ADR	20/102	21.05%	98.46%	PVª

^a PV: per-vehicle.

Magnetometer Results

	Time Span	Ground	Detected MC/Actual	Detect. Acc.		Bin	
Date		Truth		Simple	Overall		
June 30, 2012		ADR-6000	TBD/TBD	TBD	TBD	TBD	
July 1, 2012		ADR-6000	TBD/TBD	TBD	TBD	TBD	
Feb 22, 2013	15:00-16:00	Rec. Video	11/18	61.0%		PVª	

^a Per vehicle.

Migma Results

		Ground	Detected MC/Actual	· · · · · · · · · · · · · · · · · · ·		Bin
Date	Time Span	Truth		Simple	Overall	
May 19, 2012	09:00-12:00	Video	143/206	69.42%	77.94%	PV
Sept. 5, 2012	09:20-10:30	ADR-6000	26/45	57.80%		PV
Sept. 21, 2012	17:00-22:00	ADR-6000	21/46	45.65%		PV
Sept. 22, 2012	17:00-20:00	Video	13/22	59.09%		PV
Sept 23, 2012	17:00-20:00	Video	6/21	28.57%		PV

TrafficVision Results

Date	Time Span	Ground Truth	Detected MC/Actual	Detection Accuracy		Bin
				Simple	Overall	
May 18 (day)	15:00-20:40	Video	111/168	66.07%	93.77%	D) /
May 18 (night)	20:40-21:00	Video	9/12	75.00%		PV
May 19, 2012	09:00-12:00	Video	98/233	42.06%	92.58%	PV
June 30, 2012	10:00-12:00	Video	14/18	77.78%	99.96%	PV
July 1, 2012	11:00-12:00	Video	2/3	66.67%	99.92%	PV
July 3, 2012	09:00-12:00	Video	46/50	92.00%	99.90%	PV

TIRTL Results

Date	Time Span	Ground Truth	Detected MC/Actual	Detection Accuracy		Bin
				Simple	Overall	
May 18, 2012	13:00-18:46	Video	129/134	96.27%	87.95%	PV
Oct. 20, 2012	07:30-09:30	Video	709/744	95.30%	98.16%	PV

