A comparison of hazard perception and responding in car drivers and motorcyclists

Narelle Haworth
& Christine Mulvihill
Outline

• Aims, definition and theories
• Differences between novice riders and drivers
• Hazards for riders
• Crash patterns
• Hazard perception research
• Training and testing
• What has been learnt and where to now?
• Applicability to other jurisdictions
Study aimed to examine

• Differences between novice drivers and riders in Victoria, Australia in terms of:
 ➢ age and car driving experience
 ➢ hazard perception (HP) and responding

• Relevance to rider HP of car driver HP research, testing and training

• Implications for rider training programs

• Applicability of research to other countries
Definition of hazard

• “Any permanent or transitory, stationary or moving object in the road environment that has the potential to increase the risk of a crash.

• Hazards exclude characteristics of the rider or the vehicle, which are classed as modifying factors”
Modifying factors

• Can be long term characteristics (e.g., experience and skill)
• Can be transitory factors (e.g., travel speed, BAC level)
• Same object a hazard and modifying factor
Four-component model of risk

Responding to risk (Grayson et al. 2003)
Novice riders and drivers

- Novice car drivers are both young and inexperienced in car driving
- Novice motorcyclists aren’t all young and most are experienced car drivers
- So is hazard perception research relevant for riders?
- Is overseas research relevant to Victorian motorcycle research?
- Riders are not an homogeneous group
- Little is known about hazard perception for riders
Hazards for riders

Riders:

- Face same hazards as car drivers
- More susceptible to road based hazards
- Require different reactions to hazards than drivers
- More likely to be harmed than drivers
Road based hazards

- Feature in motorcycle crashes
- Road surface conditions
 - Permanent characteristics
 - Temporary characteristics
- Visual obstructions
- Road alignment characteristics
Behaviour of other road users

- Easier to identify in crash cause than road based hazards
- Failure of car drivers’ hazard perception
- Other vehicle at fault in 55-75% serious multi-vehicle motorcycle crashes
- Rider at fault in most fatal motorcycle crashes
Crash patterns

- Police crash data of limited use in identifying road based hazards
- Crash scenarios reflect riding patterns
- Earlier crash research shows failures of responding
Hazard perception and responding research

- Large number of car driver hazard perception and responding studies
- Few studies on motorcycle hazard perception and responding
Hazards reported by riders

- 3 different methods to assess drivers’ perceptions of hazards
- 70% of hazards mentioned by car drivers with no riding experience arose from behaviour of other road users
- Car drivers with riding experience also identified road surface features

Armsby, Boyle & Wright (1989)
Rider performance on car driver HPT

- Compared 3 groups:
 - Car drivers with no riding experience
 - Riders responding as if riding
 - Riders responding as if driving
- HP measured using McKenna & Crick’s (1994) car driver HPT which measures reaction time to detect hazards – not responding
- Riders responding as car drivers reacted fastest
- Riders have better HP ability than drivers?
- HPT disadvantage riders?

Horswill and Helman (2001)
Visual scanning patterns of riders and drivers

- There is a difference in scanning behaviour between drivers and riders
- Studies disagree about the differences
- Do riders look more often at road and less into the distance or vice-versa?

Nagayama et al., 1980; Tofield & Wann, 2001
Rider training and testing

• Response component is more critical for riders but car driver hazard perception training and tests ignore it
• Tests focus on detection of hazard only and ignore rider specific hazards
• No computerised rider hazard perception test
What has been learnt and where to from here?

- Novice riders differ from car drivers in age and experience
- We know little about how age and experience (as a rider and as a driver) affect HP and responding
- Rider hazard perception research suggests:
 - road based hazards more important
 - difficulties for riders lie more in responding
 - current HPT not appropriate for riders
- Need to know more about motorcycle HP and responding before developing training and testing
- Stage 2 of research program
Applicability to other jurisdictions

• Relevance of our research to other jurisdictions important for developing tailored rider training programs
• Likely that riders in other developed countries also differ from car drivers
• But need to consider effects of laws and licensing policies
 • e.g. car and motorcycle/moped licensing ages, stringency of novice licensing restrictions